Computational model of vectorial potassium transport by cochlear marginal cells and vestibular dark cells.
نویسندگان
چکیده
Cochlear marginal cells and vestibular dark cells transport potassium into the inner ear endolymph, a potassium-rich fluid, the homeostasis of which is essential for hearing and balance. We have formulated an integrated mathematical model of ion transport across these epithelia that incorporates the biophysical properties of the major ion transporters and channels located in the apical and basolateral membranes of the constituent cells. The model is constructed for both open- and short-circuit situations to test the extremes of functional capacity of the epithelium and predicts the steady-state voltages, ion concentrations, and transepithelial currents as a function of various transporter and channel densities. We validate the model by establishing that the cells are capable of vectorial ion transport consistent with several experimental measurements. The model indicates that cochlear marginal cells do not make a significant direct contribution to the endocochlear potential and illustrates how changes to the activity of specific transport proteins lead to reduced K(+) flux across the marginal and dark cell layers. In particular, we investigate the mechanisms of loop diuretic ototoxicity and diseases with hearing loss in which K(+) and Cl(-) transport are compromised, such as Jervell and Lange-Nielsen syndrome and Bartter syndrome, type IV, respectively. Such simulations demonstrate the utility of compartmental modeling in investigating the role of ion homeostasis in inner ear physiology and pathology.
منابع مشابه
K+ cycling and the endocochlear potential.
Sensory transduction in the cochlea and the vestibular labyrinth depends on the cycling of K+. In the cochlea, endolymphatic K+ flows into the sensory hair cells via the apical transduction channel and is released from the hair cells into perilymph via basolateral K+ channels including KCNQ4. K+ may be taken up by fibrocytes in the spiral ligament and transported from cell to cell via gap junct...
متن کاملThe role of potassium recirculation in cochlear amplification.
PURPOSE OF REVIEW Normal cochlear function depends on maintaining the correct ionic environment for the sensory hair cells. Here we review recent literature on the cellular distribution of potassium transport-related molecules in the cochlea. RECENT FINDINGS Transgenic animal models have identified novel molecules essential for normal hearing and support the idea that potassium is recycled in...
متن کاملA Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملیافته های تازه درباره سلولهای پاریتال معده
During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...
متن کامل[Effect of potassium channel opener, Nicorandil, on cochlear electrical potentials in the guinea pig].
It is commonly accepted that the endocochlear DC potential (EP) of the cochlea is generated by electrogenic transport of potassium ion into the scala media from the marginal cells of the stria vascularis. In recent years, many models of the marginal cell have been developed in which the EP is generated by an electrogenic ion transport system localized in either the basal or apical membranes of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 1 شماره
صفحات -
تاریخ انتشار 2007